Generalised Polynomial Chaos for a Class of Linear Conservation Laws

نویسندگان

  • Roland Pulch
  • Dongbin Xiu
چکیده

Mathematical modelling of dynamical systems often yields partial differential equations (PDEs) in time and space, which represent a conservation law possibly including a source term. Uncertainties in physical parameters can be described by random variables. To resolve the stochastic model, the Galerkin technique of the generalised polynomial chaos results in a larger coupled system of PDEs. We consider a certain class of linear systems of conservation laws, which exhibit a hyperbolic structure. Accordingly, we analyse the hyperbolicity of the corresponding coupled system of linear conservation laws from the polynomial chaos. Numerical results of two illustrative examples are presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetry group, Hamiltonian equations and conservation laws of general three-dimensional anisotropic non-linear sourceless heat transfer equation

‎In this paper Lie point symmetries‎, ‎Hamiltonian equations and conservation‎ ‎laws of general three-dimensional anisotropic non-linear sourceless heat transfer‎ ‎equation are investigated‎. ‎First of all Lie symmetries are obtained by using the general method‎ based on invariance condition of a system of differential equations under a pro‎longed vector field‎. ‎Then the structure of symmetry ...

متن کامل

Conservation Laws for Shallow Water Waves on a Sloping Beach

Shallow water waves are governed by a pair of non-linear partial differential equations. We transfer the associated homogeneous and non-homogeneous systems, (corresponding to constant and sloping depth, respectively), to the hodograph plane where we find all the non-simple wave solutions and construct infinitely many polynomial conservation laws. We also establish correspondence between conserv...

متن کامل

Uncertainty Quantification and Numerical Methods for Conservation Laws

Pettersson, P. 2013. Uncertainty Quantification and Numerical Methods for Conservation Laws. Acta Universitatis Upsaliensis. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1008. 39 pp. Uppsala. ISBN 978-91-554-8569-6. Conservation laws with uncertain initial and boundary conditions are approximated using a generalized polynomial chaos expansi...

متن کامل

A polynomial chaos approach to the robust analysis of the dynamic behaviour of friction systems

This paper presents a dynamic behaviour study of non-linear friction systems subject to uncertain friction laws. The main aspects are the analysis of the stability and the associated non-linear amplitude around the steady-state equilibrium. As friction systems are highly sensitive to the dispersion of friction laws, it is necessary to take into account the uncertainty of the friction coefficien...

متن کامل

80 02 v 1 5 A ug 1 99 6 Equations with an infinite number of explicit Conservation Laws

A large class of first order partial nonlinear differential equations in two independent variables which possess an infinite set of polynomial conservation laws derived from an explicit generating function is constructed. The conserved charge densities are all homogeneous polynomials in the unknown functions which satisfy the differential equations in question. The simplest member of the class ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Sci. Comput.

دوره 51  شماره 

صفحات  -

تاریخ انتشار 2012